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An empirical formula is obtained for the convection coefficient in
a closed parallelepiped,

Consider the natural convection in a closed volume
(Fig. 1a) in which one of the bounding surfaces (shaded)
is held at the temperature t, while all other surfaces
are held at the temperature t, where ty > t.. We
shall refer to the surfaces at t, and t, as the heater
and the cooler, respectively.

Heat transfer in a closed space can be analyzed in
a manner analogous to that used for infinite layers,
with the additional condition that the process is three—
dimensional. The parameters governing natural con-
vection in a closed space are

7“7 cpv 7, 0, gB! ﬂ‘: h: ll: l2) 0y, Og; (1)

where @ and o, denote the film coefficients between
the fluid and the hot and cold surfaces, respectively.
In this work we shall derive a formula for the overall
heat transfer coefficient between the heater and the
cooler,

E=Q/8S. (2)

We introduce the notion of an equivalent thermal
conductivity. We assume that the volume is filled
with a solid material with conductivity Agq and that
the total conductive heat flux through the solid is
equal to the total convective heat flux through the
fluid. Let the overall heat transfer coefficient and
the equivalent thermal conductivity be related by

k= heq /h. @)

Taking account of (2) and (3), we can rewrite the
system of parameters governing the problem in the
form

)"eq! }‘" cp’ n, 6, gﬂ: ﬁ, h’ lly lz- (4)

Experience shows that within a degree of accuracy
sufficient for all practical purposes the two para-
meters Iy, I, can be replaced by a single equivalent
dimension I, which we shall define presently. Thus
it is required to find the functional relation between
the equivalent conductivity Agq and all other para-
meters of (4),

heq=Th i 0, 86, 9, h, D). (5)
Applying to (5) dimensional analysis, we obtain [3].

¢, = ¥ (Gr, Pr, Z). 6)

Tet us assume that the functional relation (6) is of
the form

g, = DoZgy (GrPrn, )

Taking into account known results regarding convec-
tion in infinite layers, we can assume that the process
of convection in a closed space will depend on the
orientation of the heated surface with respect to the
volume. Following D. M. Boyarintsev [1], we intro-
duce the coefficient L, defined as the ratio of the path
followed by the convective current along the heated
surface until it meets the cold surface to the vertical
height of that path, Accordingly, L =1 or 3 for ver-
tical or horizontal heaters, respectively. *
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Fig. 1. Schematic picture of the bounded volumes (a),
coolers (b), and heaters (c).

To take account of the orientation, we introduce this
coefficient into (7), to obtain

g, = DoZo (GrPrL)n, (8)
We now represent the product Dy Zf,n in the form
DyZg' = Dy (1 Rilym, (9)

so that as [ tends to infinity we will recover the known
results for infinite layers [1,2,4~6]. Thus we repre-

sent the convection coefficient of the bounded space by
the functional relation

e, = Dy (14 h/ly™ (GrPr L)~ (10)

*The ratio L= 3 follows from the assumption that
the horizontal length of each convection cell in a ho-
rizontal layer is equal to twice the height of the layer
[1]. (Translator.)
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We shall determine the coefficients Dy, m, and n
from experiments.

The experiments were carried out with the models
shown in Fig. 1b. The coolers had the form of a
parallelepiped and were made of 2 mm aluminum
sheet. The heaters (Fig. 1c) were in the form of flat
parallelepipeds and were so constructed that the tem-
perature field was practically uniform. All surfaces
of the heaters and coolers were painted with a paint
having an emissivity of 0.92. The dimensions of the
coolers (inner dimensions) and the heaters (outer
dimensions) are given in the table. The heaters
were fastened to the coolers in such a manner that
the heat flux through their contact area was negligible
with respect to the total flux.
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Fig. 2. Convection coefficients of bounded

spaces. 1,2, 3) Models No, 1, 2, and 3, re-

spectively; a—vertical orientation; b—hori-
zontal orientation.

When steady state was reached, the temperature of
the heaters and the coolers was measured at 9 and 16
points by means of differential copper-constantan
thermocouples (0.30 and 0.28 diameter wires). The
readings of the thermocouples were used to calculate
the surface-mean temperatures of the heater and the
cooler. The heater was fed from a stabilized voltage
source. The power dissipated by the heater was
measured with a precision wattmeter.

In the vertical-heater models, the heat flux from
the heater to the cooler is transmitted by convection
and radiation in the vertical lateral spaces and by ra-
diation and conduction through the air gap between
the edges of the heater and the cooler. In the hori-
zontal-heater models, the heat flux is transmitted by
radiation from all surfaces, by convection in the upper

horizontal space, and by conduction in the lower space
and between the edges of the heater and the cooler.
Therefore, to determine the convective heat flux, the

radiative and conductive heat fluxes were subtracted in

both cases from the total power dissipated by the
heater.
The equivalent thermal conductivity was calculated
from the formula
Qn

Apg= ———— .
4 ly—10) S )

The results were correlated in terms of dimension-
less groups. The physical parameters in the groups
were evaluated at the reference temperature:

ty =0.5 (t, + £). 12)

Figure 2 correlates the experimental results according

to relation (10) in logarithmic coordinates. The slope

corresponds to n = 0.25 and the intercepts on the or-~

dinate axis represent the values of the product Dozﬂn.
Choosing I = V1,1, as the equivalent dimensions

of the heater, we can represent relation (9) in loga-

rithmic coordinates (Fig. 3). This yields the values

Dy = 0.24 and m = 4.15. The empirical formula for

the convection coefficient is then

g = 0.24 (14 A/1)*18 (GrPr L)% (13)
for parameters in the range
2.5.108 < GrPrL <1.2-107,
0.18 /1 <0.40.

This formula correlates the experimental data within
7%.

Due to the lack of published data on the convection
coefficient in a parallelepiped, we could not compare
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Fig. 3. Dependence of DyZ{"
on the ratio h/1.

our results with those of other authors. Therefore we
shall use the following device: We assume that in (13)

h/1 = 0 (infinite layer) and we compare our results

Geometric Dimensions of the Models (in m)

I\ﬁédgf Ly L, Ls I Z & A
1 0.339 0.339 ’ 0.130 0.337 0.337 '0.013 0.061
2 0.296 0.572 0.200 0.295 0.570 0.013 0.094
3 0.339 0.339 0.240 0.337 0.337 0.013 0.114
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with known data on the convection coefficient in infi-
nite layers (Fig. 4). The results of this comparison
allow us to conclude that the range of applicability of
(13) can be extended to

0< B/l <0.40, 10* < GrPr L < 10°,

Formula (13) can be rewritten in the form

&y = A (1 h/ly-15 f/(‘t’}l‘_‘_‘mLo.zs’ (14)
where
A= 0.24 (B g Pr) /305,

Here § is measured in (°C)”!, g in m . sec™?; v inm? .
sec”}, hinm, and L*% = 1 for the vertical orien-
tation and L»% = 1,3 for the horizontal orientation.
The values of A for air at ty, = 0, 50, 100, and 200° C
are 26.6, 21.3, 18.2, and 14.0, respectively.
The overall heat transfer coefficient between the
heater and the cooler is given by the formula

h 4.15 4 ]
k= (1+T) Ay (tn—tyh L5,

where A = A,A Wem~"/4.C™/4, The values of A for
air at t,, = 0, 50, 100, and 200° C, are 0.63, 0.58,
0.56, and 0.44, respectively.

NOTATION

A) thermal conductivity; cp) specific heat at constant pressure;
n and v) dynamic and kinematic viscosity; 8) coefficient of thermal
expansion; 9 temperature drop between heater and cooler; a) thermal
diffusivity; p) density; Q) convective heat flux between heater and
cooler:; o and t C) surface-mean temperatures of heater and cooler,

respectively; S) area of heating surface of heater; €) = A, /A) dim-
ensionless convection coefficient; Gr = g8 h®/v%; Pr = v/a) Grashof
and Prandtl numbers; Z = h/l; D,y m and n) numerical coefficients.
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Fig. 4. Comparison of present results with

published data on the convection coefficient

of infinite layers. 1) Our data; 2) [5]; 3,4)
[1]; 5,6) [6}; 7) [5]; 8) [4]-
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